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Abstract-Available analyses of convective mass or heat transfer in particulate systems treat only a single 
drop or bubble in the ideal case of a completely pure system. There is, therefore, a definite need to establish 
correlations for assemblages of many drops or bubbles in practical two-phase systems where surfactant im- 
purities are ever present. Such correlations are developed in the present work by employing the 
von Karman-Pohlhausen integral method to the boundary layer formed in moving clouds of spherical 
drops, bubbles, or solid particles. The results obtained generalize previous analyses for single particles and 
for assemblages of solid particles. In particular this method allows the evaluation of the yet untreated 
practical cases of convective transfer in intermediately circulating ensembles of drops or bubbles. Em- 
ploying these new results the applicability of the method is extended to the analysis of total average 
convective transfer in size-distributed populations. For the establishment of an appropriate particle size 
distribution function a large number of experimental data are correlated by a single parameter function 
which is readily integrated to give total average interfacial transfer rates. A comparison with other correla- 
tions demonstrates the generality and applicability of the present results which include to a first approxima- 
tion most available correlations for drops or bubbles at rapid, intermediate, and zero internal circulation. 

NOMENCLATURE 

radius of a typical particle in the 
population; 
mean volume radius defined by equa- 
tion (26); 
surface mean radius defined by equa- 
tion (29); 
coefficient in equation (35); 
concentration in the diffusional bound- 
ary layer around drops or bubbles 
(binary system); 
concentration in the bulk fluid and at 
the edge of boundary layer; 
equilibrium concentration at interface 
of particle; 
binary diffusion coefficient ; 

* Also (as a joint appointment) at the Department of 
Chemical Engineering, University of Pittsburgh, Pittsburgh, 
Pa., U.S.A. 
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a normalized particle size distribution 
function (number density); 
average mass transfer coefficient for 
uniform sized system; 
average mass transfer coefficient (based 
on C3) for size-distributed system; 
average linear dimension of impeller 
or dispersing device; 
total average interfacial transfer rate 
over the entire population of particles 
defined by equation (24); 
total number of particles in the particu- 
late system defined by equation (25); 
relative velocity between continuous 
and dispersed phases (see [25] for 
definition); 
ensemble velocity defined by equation 

(1% 
interfacial velocity at equator of 
particle; 
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Stokes’ velocity of single solid particle; 
total volume of the particulate system; 
radial component of velocity vector in 
continuous phase; 
tangential component ofvelocity vector 
in continuous phase; 
function defined by equation (6); 
normal distance to particle surface 
y = (r - a); 
function defined by equation (7). 

Greek symbols 
parameter defined by equation (32); 
viscosity ratio defined by equation (8); 
“interfacial viscosity” due to adsorbed 
surfactant impurities; 
thickness of diffusional boundary layer; 
mean thickness of diffusional boundary 
layer; 
dimensionless radius defined by equa- 
tion (9); 
cone angle between radius vector and 
the vertical directed in the sense of the 
drop motion; 
viscosity; 
density; 
interfacial tension; 
volume fraction occupied by dispersed 
phase; 
rotational speed of impeller. 

Dimensionless numbers 

Pe, 2Ua/D; 
Pe e, 2 U,a/D; 

Pe3, 2U,Z,/D; 

Sh, 2ak/D ; 
K, 2ii,lE, JD; 

we, L?pl22/a. 

Superscripts 

2 
refers to the continuous phase; 
refers to the dispersed phase. 

INTRODUCTION 

THE ESTIMATION of convective interfacial mass or 
heat transfer rates in assemblages of many 
drops, bubbles, or solid particles is very com- 

plicated since it requires a simultaneous analysis 
of a large number of independent variables. A 
considerable contribution to these complica- 
tions is due to the combined effects of particle 
concentration, surfactant concentration, and 
particle size distribution on the transfer mech- 
anisms in such systems. In practical applications 
(where surfactant impurities are ever present) all 
three effects play a significant role in changing 
the velocity, temperature and concentrations 
fields from those predicted for a single particle 
in a pure system. Therefore, in analysing the 
fluid mechanics, heat, and mass transfer mech- 
anisms of these systems the last three effects 
should be taken into account. Unfortunately 
most available analyses treat only a single drop, 
bubble, or solid particle in the ideal case of a 
completely pure interface (see Table 1). 

The aim of this work is to evaluate convective 
interfacial mass (or heat) transfer rates to or from 
ensembles of many spherical drops, bubbles, or 
solid particles (uniform and size distributed) at 
high P&let and low particle Reynolds numbers. 
For that purpose we employ here the thin 
boundary-layer concept coupled with an 
integral-method approach. similar to the von 
Karman-Pohlhausen method. The results ob- 
tained are then compared with available correla- 
tions in some limited domains and with the 
Levich boundary layer approach [ 1 l] extended 
recently by Waslo and Gal-Or [ 181 for ensembles 
of drops and bubbles. In the last paper as well 
as in the present one the velocity fields derived 
earlier by Gal-Or and Waslo [8] are employed. 
For the special case of ensembles of solid 
particles these velocity fields reduce to those of 
Happel [lo]. The latter were employed by 
Ruckenstein [ 143 and Pfeffer [ 131 to evaluate 
convective transfer in ensembles of (uniform) 
spherical solid particles (where surfactant im- 
purities play no role and internal circulation is 
absent). It would, therefore, be of particular 
interest to compare the results of the present 
work for ensembles of drops or bubbles with 
those of Ruckenstein and Pfeffer for ensembles 
of solid particles. 
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Table 1. Comparison of aoailable correlations with present results for conoectioe mass transfer rates to or from single or 
assembldges of drops, bubbles, or solid particles at low particle Reynolds numbers 

Expression Particles 
Internal 

circulation 
Pe Reference 

Sh = @923(j? y’_-G’,)‘Pe,t 

Sh = 0895 (B i_-$L)L Pe,* 

Ensemble Strong Large Waslo and Gal-Or [ 181 

Ensemble Strong Large Present work 

1 
+e B-y--- 

[ 
(1 - 69 1 

She3 = Pe-’ Ensemble Intermediate Large Present work 

Sh = 1.26(qwyPee* 

Sh = 1.306(~~~~W)iPee* 

Ensemble None Large Pfeffer [ 131 

Ensemble None Large Present work 

Ensemble 

Single 

Single 

Single 

None 

Strong 

Strong 

Strong 

Large Ruckenstein [ 141 

Large Levich [ 1 l] 

Large Lochiel and Calderbank 

r121 
Large Ruckenstein [ 141 

*Pet Single Strong Large Griffith [9] 

* Pet Single Strong Large Ward. Trass and 
Johnson [17] 

Single Intermediate Large Ruckenstein [ 141 

Sh = 0.998 Pe* 
Sh = 0.99 Pe* 

Sh = 0.99 Pet 
Sh = 1.037 Pe* 
Sh = 089 Pe* 
Sh = l.O37Pe* 

Single 

Single 

Single 

Single 

Smgle 

Single 

None 

None 

None 

None 

None 

None 

Large Levich [ 111 

Large Lochiel and 
Calderbank [ 121 

Large Friedlander [4] 

Large Akselrud [l] 

Large Friedlander [21] 

Large Ruckenstein [ 141 

Sh=2 1 +$+@15Pe’+.... 
( > 

Sh = 2(1 + 0.16 Pe’) 

Single 

Single 

None 

None 

Small Kronig and 
Bruijsten [22] 

Small Frisch [23] 



730 I. YARON and B. GAL-OR 

Table l-continued 

Expression Particles 
Internal 

circulation 
Pe Reference 

1+~+~+.... 
> 

Single None Small Friedlander [21] 

M, Total average interfacial transfer given by equation (37) Size- Strong Large Present work 

distributed 

ensemble 

M,Totalaverageinterfacial transfer given byequation(38) Size- None Large Present work 

distributed 

ensemble 

CONVECTIVE TRANSFER IN ENSEMBLES 
OF UNIFORM PARTICLES 

Mass and heat transfer between moving drops, 
bubbles, or solid particles is an inherently 
unsteady-state process. However, small particles 
moving at low particle Reynolds numbers attain 
their terminal velocity in a few particle diameters 
after detachment from their formation devices. 
If changes of particle mass due to diffusion and 
possible changes in surface tension, viscosities, 
etc., are negligible, steady-state analysis becomes 
valid for times greater than that required for the 
particle to attain its steady-state velocity. The 
mass transfer resistance inside drops or bubbles 
can be neglected when its contents consists of 
only one chemical component (and the con- 
tinuous phase is insoluble in the dispersed 
phase), or when the combination of diffusivity 
and internal circulation makes the internal 
resistance negligible compared to that of the 
continuous phase. Levich [4] demonstrated 
that even at Re 4 1 a thin diffusional boundary 
layer is formed around the droplet interface 
provided that Pe $ 1 -a condition preveailing 
in most liquid phases. Under these conditions 
and when axisymmetrical flow exists around the 
particles of the assemblage [S] the concentra- 
tion fields in the binary diffusional boundary 
layer are governed by* 

* The analysis and formulations for convective heat 
transfer is similar and, therefore, will not be repeated here. 

subject to the boundary conditions 

c = Ci for y = 0 

c = C, for y = s(0) 

where S(0) is the thickness of the diffusional 
(or thermal) boundary layer. 

Integration of equation (1) with respect to y 
between the limits 0 and S(0) combined with the 
continuity equation can readily lead to 

-D ?.f 0 ay y=. =;;6r(c-Cd)bdy 

++otBdje)(c - C,)I$dy. (3) 
0 

where the term 2V’Jr in the continuity equation 
has been neglected. 

We now approximate the concentration field 
in the boundary layer by the polynomial 

c - c, 
P=l-2&+2(&~-(&)‘. 
Ci - C, 

(4) 

For the velocity component V0 in the phase 
surrounding ensembles of drops, bubbles or 
solid particles we employ the Gal-Or and 
Waslo [S] velocity field 
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v 3U, 1 1 
e=sj@ - --- 

+3 a w+Y-2@/s sine ) t w[ 

(5) 

Whete 
+ p$$+(u* - fu,, 

I 
sin8. ($1) 

w = 3 + 2s + 2&l - #), (6) Bringing equations (4) and (11) to (3) one can 

Y=2+2@+@(3-2&j, (7) shQwthat 

?++T 
a 

(8) 

Here C#J is the volume fraction occupied by the 
dispersed phase and y the “interfacial viscosity” 
due to surfactant impurities. The last is respons- 
ible for retardation of internal circulation in 
drops or bubbies. The derivation and physical 
significance of y has been fully discussed 
elsewhere [8]. 

Rewriting V, in terms of U, SE V, (y = 0, 
0 = n/2, any 4) and U, = V, (y + 00, 8 = rt/Z, 
C# --, 0) one easily obtains 

Neglecting terms containing higher powers 
than one of y/a and c$*, as well as their products, 
equation (10) reduces to 

Defining the average value of convective mass 
transfer coe@cient over the whole surface of a 
particle by 

k 
-D [ [(&/f3y)],= o 2za2 sin B d@ 

z 
47W2(Ci - CJ 

(13) 

and using equation (4) together with the defmi- 
tion Sh = 2ak/D, one obtains 

I 

Sh = 2a 

sin 8 s- W) de. 
(14) 

0 

For the following analysis we now distinguish 
between three main domains of internal eircula- 
tion: 

(ii) 

(i) Rapidly circulating drops or bubbles 
(i.e. in highly purified flows in the 
laboratory). 
Non-circulating solid particles or drops 
and bubbles (the last two systems are 
known by observations to behave like 
solid particles even when the contamina- 
tion degree is relatively low [20, 24-j). 

(iii) intermediate rates of internal circulation 
(covers most practical cases where 
internal circulation in drops and bubbles 
is only partially retarded). 
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(i) Rapidly circulating drops or bubbles 
For rapid circulating drops or bubbles, 

namely when 

equation (12) can be approximated by 

d(e) d[S(@/a] 40 US -. 
a de = 3Pesin8 U, 

_ 2 So 2cot 0. ( > a (15) 
\ 

Integrating equation (15) and applying the 
condition that S(0) approaches a finite value 
when 0 + 0, gives 

s(e) 80 ‘I2 -= - 
a 0 9 

Pe_ 1,2 (~0~3 8 - 3 cos e + 2)1/z 

sin2 8 

(16) 

Introducing this solution into equation (14) and 
integrating finally gives 

iI2 
Pe112 

(17) 

Waslo and Gal-Or [ 181 defined P&let number 
on a basis of “ensemble velocity” 

(18) 

Using their definition, equation (17) becomes 

Sh = 0.895 (/I y ‘if;)“’ Pedl’, (19) 

which is similar in form to that derived by 
Waslo and Gal-Or by a more exact analysis 
(see Table 1). When 4 -+ 0 and y -+ 0, equation 
(19) reduces to 

Sh = 0.63 
l/2 

Pe’l’ (20) 

which is identical with the expressions of 
Ruckenstein [14], for convective mass transfer 
to a single clean drop or bubble. Levich [l I] 
as well as Lochiel and Calderbank [ 121, found 
by using a more exact method, the numerical 
coefficient in equation (20) to equal 0.65, 
while Griffith [9], and Ward et al. [17], who 
assumed different concentration profiles, give 
the values 0.67 and 0.61 respectively. 

(ii) Solid particles and non-circulating drops or 
bubbles 

For negligible values of U&J, namely, when 

equation (12) can be approximated by 

awY~l 20 a 2 (1 _ “(jj)-l -=------ 

de ( > Pe sin 8 s(e) 2 

wa - aC0t 8. 

Integrating this equation and again applying 
the condition that S(0) approaches a finite 
value when 0 + 0, one obtains 

y = (15)‘/3 (I _ $&-i/3 pe-‘12 

Introducing this solution 
using the approximation 

(28 - sin 2e)1j3 

sin 8 

into equation (14) and 

1 - b* 
zz 1 + $$f’ 

one obtains in terms of U, 

Sh = 1.306 (b:,“:w)” Pe,“, (21) 

and in terms of U 
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or in terms of the more practical variables Equation (21) is similar in form to that, 
derived by Waslo and Gal-Or [18], and Pfeffer 
[ 131, who give the value of 1.26 for the numerical 
coefficient. Equation (22) is also similar to that 
obtained by Ruckenstein [14] for ensembles of 
rigid spheres. When 4 + 0, equation (22) re- 
duces to 

Sh = 1.037 Pe+ 

which is identical with the expression of Rucken- 
stein [14] and Akselrud [l] for single solid 
spheres, and is similar in form to that of Levich 
[ll], Friedlander [4], and Lochiel and Calder- 
bank [12], whose numerical coefficient is 0998, 
(see Table 1). 

Sh-3 = Pe-‘. @W 

It is interesting to note that for solid particles 
or non-circulating drops and bubbles (where 
B = 0 or U0 = 0) most correlations of Table 1 
agree in showing that 

Sh oc Pe*, 

Our results show that the Sherwood number 
in particle ensembles decreases with increasing 
volume concentrations of the dispersed phase, 
as well as with increasing values of y (due to 
retardation of internal circulation by impurities). 
The last effect is a function of p [equation (8)]. 
The significance of the latter conclusion is 
apparently not restricted to equation (19), 
which is valid at high /? values. 

while for rapidly circulating drops or bubbles in 
ideal conditions 

Sh a Pe*. 

These well-known limits as well as the entire 
practical range of intermediate /? values are 
covered in equation (23). 

(iii) Intermediate rates of internal circulation 
In most practical cases the internal circulation 

in each member of the drop or bubble ensembles 
is only partially retarded due to traces of sur- 
factant impurities which are ever present in 
particle technology (even the equipment or the 
atmosphere may supply enough impurities to 
cause a significant change in rates of heat and 
mass transfer in the system). For the range of 
intermediate rates of internal circulation (i.e. 
intermediate values of j3 or U&J,) one must 
integrate equation (12) numerically, or else 
resort to approximate interpolation\ methods. 
Such an interpolation has been done in this 
work whereby equation (12) can be reexpressed 
as 

Furthermore equation (23) generalizes avail- 
able correlations for a single solid particle, 
drop or bubble to ensembles which consist of 
many particles. Hence equation (23) is the most 
general one available at present for correlating 
convective mass (or heat) transfer in ensembles 
of particles in the presence of surfactant im- 
purities. It contains as a special case the expres- 
sion derived by Ruckenstein [14] for a single 
particle (see Table 1). 

TOTAL AVERAGE CONVECTIVE TRANSFER 
IN SIZE-DISTRIBUTED PARTICULATE SYSTEMS 

A general analysis and formulation for the 
evaluation of total average coupled heat and 
multicomponent mass transfer in size-distributed 
particulate systems has been recently given by 
Gal-Or [7]. According to this formulation the 
total average interfacial mass transfer in un- 
coupled binary systems with large population 
of particles characterized by any general 
normalized particle size distribution 

P-4 ” $J(a)do = 1 
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is given by 

M= - jgRO(~)~=~ho’singa)dads, (24) 

0 0 
where 

ii, = [ [ c.+-(a) dalf. 

(25) 

Employing equation (4) and (14) in (24) and 
defining a mean volume Sherwood number, 

(27) 

one obtains the total average convective inter- 
facial transfer rate Jr 

M = &I$& (Ci - C,) 
s 

uf(a) da. (28) 

0 

I00 
t 

Here Sherwood number has not been included 
in the integral. This is based on previous con- 
clusion of Gal-Or and Hoelscher [S] which 
states that negligible error is introduced in the 
mass- (or heat)-transfer coeffkient if one replaces 
the variable particle size by the appropriate 
statistical mean. 

To integrate equation (28) one must employ 
the appropriate expression for f(u). For many 
dispersed systems such expressions are rather 
complicated and do not readily lend themselves 
to analytical treatment. In certain cases, how- 
ever, such as that of some gas-liquid and liquid- 
liquid dispersions produced by mechanical 
agitation, one can approximate the size- 
distribution function by simpler relations, con- 
taming only a single parameter. 

Such a practical case is illustrated in Fig. 1, 
where some experimental data are correlated 
by using a dimensionless radius a/G,,, where 
si32 is the surface mean radius defined by 

FIG. 1. Generalized size distribution data for gas-liquid and liquid-liquid dispersions. 
0 Experimental data of Chen and Middleman [3] for liquid-liquid dispersions in agitated 

Vessels; 
A Data of Gal-Or [6] for gas-liquid dispersions in agitated contractor; 

0 Data of Weaver et al. [19] for isobutanol-in-water dispersions in a spray column; and 
Data of Shinnar [16] for molten wax-water dispersions in stirred vessels. 

L--- Bayens distribution function [equation (31)]. 
-~--- Chen and Middleman’s empirical expression [equation (30)]. 
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7 a3f(a) da 
0 

a32 = g) 

j, a?f(a)da * 

(29) 

The data include those of Chen and Middleman 
[3] for dispersions of 14 different organic liquids 
in water in agitated vessels of different diameters 
and agitator-to-vessel dameter ratios; of Gal-Or 
[6, 71 for air-water dispersions in agitated 
contactors at different agitator speeds; of Shinnar 
[ 161 for dispersions of 5 % molten Shellwax in 
hot water in the presence of O-1 % polyvinyl 
alcohol, produced in an agitated vessel by a 
turbine mixer rotating at different speeds; and 
the data of Weaver et al. [19] for dispersion of 
isobutanol in water, obtained by passing the 
organic phase through $ in. nozzles into a 
spray column. 

As seen from Fig. 1, the data are adequately 
correlated by the empirical expression of Chen 
and Middleman [3] 

Aa) = 0.23 Jn 
Lexp [ -9.2 (2 - l.O6r]. (30) 

To evaluate total interfacial mass transfer rate 
from equation (28) one would, however, prefer 
to approximate the size-distribution data by the 
more readily integrable expression 

f(a) = 4 
0 

f * a2 exp [ - cta2], (31) 

originally proposed by Bayens [2] for coagula- 
tion of hydrosols in Brownian motion, and 
subsequently modified by Gal-Or and Hoelscher 
[5]. In equation (31), 

4 3 
a= ( > (Jn)W * (32) 

It has been shown [7], that for this case 

si, = Z,,/l*148. (33) 

Equation (31) has the same form as the Maxwell- 
Boltzmann speed distribution function for 
gaseous atoms, and may conceivably be associ- 
ated with the spectrum of energy levels involved 

in the process of dispergation. 
Introducing equation (31) into (28) and inte- 

grating one finally obtains the general design 
equation 

M =~2 S7;; ~V(C, - Ci). (34) 

Shinnar and Church [15] have shown 
theoretically that for dispergation by mechanical 
agitation, when break-up of droplets is the 
predominant mechanism with respect to their 
coalescence, the surface mean radius may be 
related to the agitator Weber number by 

Z 32 = BL(We)-0’6 (We = t3pLP/a). (35) 

Their prediction was experimentally substanti- 
ated by Chen and Middleman [3], who found 
B = 0.026 for small values of 4. 

Employing equation (33) and (35) and the 
above value of B in (34) one obtains the practical 
result 

M = 4.25 x lo3 .~ S7;; ~V(C, - Ci). (36) 

For mass transfer from ensembles of drops or 
bubbles with high internal circulation (highly 
pure systems), equation (36) becomes 

M = 3.8 x lo3 fl ( Y!-J;) 

x (E3)+(y)1’2 f$V(C, - C,), (37) 

and for ensembles of solid particles or non- 
circulating drops or bubbles 

M = 5.55 x lo3 ( y’--;‘,) 
(38) 

For intermediately circulating size-distributed 
drops or bubbles one must evaluate & from 
equation (23). This can be done when the particu- 
lar operating conditions are known (i.e. 4, 
P,, Pd, cc,, cc,, Y, 53 ad 9). The= equations Can be 

used in predicting trends in operating conditions 
and efficiency of size-distributed two-phase 
dispersed systems. 
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Table 1 compares the present results with 
available correlations for convective transfer 
rates to or from single drops, bubbles or solid 
particles or their assemblages moving at low 
particle Reynolds numbers. The comparison 
demonstrates the generality and applicability 
of the present results which include to a first 
approximation most available correlations for 
single particles and assemblages moving with 
rapid, intermediate and zero internal circulation. 

Finally it should be noted that the Sherwood 
numbers reported here do not include the non- 
flow contribution which can usually be approxi- 
mated by 2/(1 - q%*). A more exact evaluation 
of the non-flow contribution is available else- 
where [26]. 
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CONVECTION THERMIQUE OU MASSIQUE AUTOUR DE GOUTTES, DE BULLES OU 
PARTICULES SOLIDES DISTRIBUEES EN TAILLE 

Rhmk-Des analyses utilisables de la convection thermique ou massique dans des systemes a particules 
traitent seulement d’une goutte ou d’une bulle unique dans le cas ideal d’un systtme completement pur. 
I1 est cependant necessaire d’etablir des relations pour des ensembles de plusieum gouttes ou bulles dans 
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des systtmes pratiques ?+ deux phases od les impuret6s surfactantes sont toujours prCsentes. De telles 
formules sont d&velopp&es dans cet article en appliquant la m&hode inttgrale de Von K&rmBn-Pohlhausen 
a une couche limite form&e dans des nuages mobiles de gouttes, bulla ou particules solidea sphkriques. Les 
rbsultats obtenus gbntralisent des analyses antkrieures pour des particules uniques et pour des ensembles de 
particules solides. En particulier, cette m6thode permet l’tvaluation de cas pratiques, encore non trait&s, de 
la convection dans des ensembles de gout& ou bulles circulant en rCgime intermtdiaire. A partir de ces 
nouveaux rtsultats, I’application de cette m&hode est &endue g l’analyse de la convection globale moyenne 
dans des populations distribuies en taille. Pour l’ttablissement d’une fonction appropr& de distribution 
en taille des particules, un grand nombre de rCsultats expbrimentaux est unifie par une fonction B parambtre 
unique qui est dkjja int&gr& pour donner les flux globaux de transfert interfacial. Une comparaison aver 
d’autres formules demontre la g&&alit& et I’applicabilit6 des rCsultats presents qui incluent en premiere 
approximation des formules plus utilisables pour des gouttes ou bulles dans le cas d’une circulation interne 

rapide, intermkdiaire ou nulle. 

STOFF- ODER WARMEUBERTRAGUNG VON GROSSENVERTEILTEN TROPFEN 
BLASEN ODER FESTEN TEILCHEN BEI KONVEKTION 

Zusammenfassuag-Verfiigbare Untersuchungen der konvektiven Stoff- oder WLrmeiibertragung in 
Systemen mit einzelnen Teilchen behandeln nur einen einzigen Tropfen oder eine. einzige Blase fir den 
ldealfall eines vollkommen reinen Systems. Daher ergibt sich eine gewisse Notwendigkeit, Beziehungen 
liir Anhlufungen vieler Tropfen oder Blasen fiir inder Praxis vorkommende zweiphasige Systeme aufzustellen, 
wo Unreinheiten stets vorhanden sind. Solche Beziehungen werden in der vorliegenden Arbeit unter 
Anwendung des von-K8rm8n-Pohlhausen-Integrals auf die Grenzschicht entwickelt, wie sic sich in ciner 
bewegenden Menge kugelfiirmiger Tropfen, Blasen oder fester Teilchen ausgebildet hat. Die erzielten 
Ergebnisse gestatten eine Verallgemeinerung der vorhergehenden Liisung fiir einzelne Tropfen und fiir 
eine Anhlufung fester Teilchen. Insbesondere erlaubt diese. Methode die Auswertung noch unbehandelter 
praktischer FIlle der konvektiven Ubertragung bei untereinander zirkulierenden Tropfen- oder Blasen- 
hauf6n. Mit diesen neuen Ergebnissen wird die Anwendbarkeit dieser Methode auf die Untersuchung 
der gesamten durchschnittlichen konvektiven ijbertragung bei griissenverteilter Anhlufung erweitert. 
Fiir die Aufstellung einer passenden Verteilungsfunktion fiir die Teilchengriisse wird eine grosse Anzahl 

von Versuchswerten herangezogen. 

KOHBEKTHBHbIm MACCO- MJIM TEIIJIOOEMEH HAlIEJIb, rIY3blPEtl 
I4JIkl TBEPAMX YACTLIU, PACIIPEAEJIEHHbIX II0 PA3MEPY 

AHHOTaqKsI-Cy~eCTBy~q~I~ MeTOn aHaJIC13a KOHBeKTIIBHOrO MaCCOllJIII TenJIOO6MeHa ES 

CIWTeMax, COCTOH~HX ML3 'laCTIiI&, COCTOHT JI3 paCCMOTpeHWI TOnbKO OWOti KaIIJIH IIJIlI 

ny3bIpbKa A2lrt HAeaJIbHOIW CJIyVaR WiCTOti CHCTeMbI.CJIe~OBaTeJIbtIO,Cy~eCTByeT HeO6XOW- 

MOCTb YCTaHOBJIeHlIR COOTIiOUleH11ti ,l(JIR ~~COBOKynKOCTeti~~ MHOJKeCTBa KaneJIb MJIM ny3bIpbKOB 

B 2-x Ga3Hbxx cmTeMax, me ~OCTOJIHHO ~~H~~TCTB~IOT conyTc~~yJ0WIe 3arpfl3HeHm. 3T11 

cooTHomeHm pa3pa6aTnaamTcR B KacTonqeii pa6oTe nplr sIcnonb30BaJIm mITerpanbIior0 

MeToAa KapMaHa-UonbxayaeJIa am norpaHwiHor0 mom, o6pa3yIomerocn B AB~IJK~WIIXCJI 

o6naKax C@epWIeCKclIX KaneJIb, Ily3bIpbKOB H;III TIJepAbIX YaCTW. nOJIyIeIIHbIe pe3yJIbTaTbI 

RBJIRIOTCJI o606IqemIeM npeAUIeCTByJO~ItX aKaJIH30B AJIR OAHKOVHMX VaCTlIIl II COBOKyn- 

HOCTeti,COCTOFI~NX II3 TBepAbIX YaCTlIq. B 'iaCTIIOCTII,3TOT MeTOg n03BOJIHeT OIleHHTb A0 CHX 

nOp HeMCCJIeAOBaHHbIe npaKTWIeCKHe WIyVaII KOKB~'IFTIiB110rO 06MeHa B IWpKyJIlIpyIOIWIX 

rpynnax KanejIb mm ny3bIpbKon. BCnOjIb3yJI 3TII HOBbIe AaHHbIe, 3TOT MeTOn MOXIIO 

IIpHMeHlITb AJIH aHam3a cyimrap~roro cpeamro KOHBeKTIIBHOrO 06nleKa B noI~y.mumx. 

pacnpeaenemmx no pa:3uepy. 

fim 0IIpeAneIIm cooTseTcBymqei1 cf)yJrKqm~ pacnpezenemfl no pamepy 9aCT114 

o6o6waeTcfI 6OnbUIOe KOJIH~eCTIlO 3liCnepIlMeHTaJIbHbIx JIaKHbIX. 


