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Abstract—Auvailable analyses of convective mass or heat transfer in particulate systems treat only a single
drop or bubble in the ideal case of a completely pure system. There is, therefore, a definite need to establish
correlations for assemblages of many drops or bubbles in practical two-phase systems where surfactant im-
purities are ever present. Such correlations are developed in the present work by employing the
von Karmén-Pohlhausen integral method to the boundary layer formed in moving clouds of spherical
drops, bubbles, or solid particles. The results obtained generalize previous analyses for single particles and
for assemblages of solid particles. In particular this method allows the evaluation of the yet untreated
practical cases of convective transfer in intermediately circulating ensembles of drops or bubbles. Em-
ploying these new results the applicability of the method is extended to the analysis of toral average
convective transfer in size-distributed populations. For the establishment of an appropriate particle size
distribution function a large number of experimental data are correlated by a single parameter function
which is readily integrated to give total average interfacial transfer rates. A comparison with other correla-
tions demonstrates the generality and applicability of the present results which include to a first approxima-
tion most available correlations for drops or bubbles at rapid, intermediate, and zero internal circulation.

NOMENCLATURE f(a), a normalized particle size distribution
a, radius of a typical particle in the function (number density);
population; k, average mass transfer coefficient for
a;, mean volume radius defined by equa- uniform sized system;
tion (26); ks,  average mass transfer coefficient (based
d,,, surface mean radius defined by equa- on a;) for size-distributed system;
tion (29); L, average linear dimension of impeller
B, coefficient in equation (35); or dispersing device;
¢ concentration in the diffusional bound- M, total average interfacial transfer rate
ary layer around drops or bubbles over the entire population of particles
(binary system); defined by equation (24);
C,, concentration in the bulk fluid and at N,  total number of particles in the particu-
the edge of boundary layer; late system defined by equation (25);
C, equilibrium concentration at interface ., relative velocity between continuous
of particle; and dispersed phases (see [25] for
D, binary diffusion coefficient; definition);
U,, ensemble velocity defined by equation
* Also (as a joint appointment) at the Department of (18);f . loci f
Chemical Engineering, University of Pittsburgh, Pittsburgh, Uy, interfacial velocity at equator o

Pa., US.A.
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particle;
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Stokes’ velocity of single solid particle;

total volume of the particulate system;

radial component of velocity vector in

continuous phase;

V;,  tangential component of velocity vector
in continuous phase;

W,  function defined by equation (6);

SIxXCa

M

¥ normal distance to particle surface
y=(r-a;
Y, function defined by equation (7).
Greek symbols
o, parameter defined by equation (32);
B, viscosity ratio defined by equation (8);
A “interfacial viscosity” due to adsorbed

surfactant impurities;

6(0), thickness of diffusional boundary layer;

Sn  mean thickness of diffusional boundary
layer;

n, dimensionless radius defined by equa-
tion (9);

0, cone angle between radius vector and
the vertical directed in the sense of the
drop motion;

i, viscosity;

P, density;

G, interfacial tension;

@, volume fraction occupied by dispersed

phase;
Q, rotational speed of impeller.

Dimensionless numbers

Pe, 2Ua/D;
Pe,, 2U,a/D;
Pe,, 2U,a,/D;
Sh, 2ak/D;
Sh,, 2a;k,/D;
We, L’pQ?*o.
Superscripts
¢, refers to the continuous phase;

d, refers to the dispersed phase.

INTRODUCTION
THE ESTIMATION of convective interfacial mass or
heat transfer rates in assemblages of many
drops, bubbles, or solid particles is very com-
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plicated since it requires a simultaneous analysis
of a large number of independent variables. A
considerable contribution to these complica-
tions is due to the combined effects of particle
concentration, surfactant concentration, and
particle size distribution on the transfer mech-
anisms in such systems. In practical applications
(where surfactant impurities are ever present) all
three effects play a significant role in changing
the velocity, temperature and concentrations
fields from those predicted for a single particle
in a pure system. Therefore, in analysing the
fluid mechanics, heat, and mass transfer mech-
anisms of these systems the last three effects
should be taken into account. Unfortunately
most available analyses treat only a single drop,
bubble, or solid particle in the ideal case of a
completely pure interface (see Table 1).

The aim of this work is to evaluate convective
interfacial mass (or heat) transfer rates to or from
ensembles of many spherical drops, bubbles, or
solid particles (uniform and size distributed) at
high Péclét and low particle Reynolds numbers.
For that purpose we employ here the thin
boundary-layer concept coupled with an
integral-method approach.similar to the von
Karman-Pohlhausen method. The results ob-
tained are then compared with available correla-
tions in some limited domains and with the
Levich boundary layer approach [11] extended
recently by Waslo and Gal-Or [ 18] for ensembles
of drops and bubbles. In the last paper as well
as in the present one the velocity fields derived
earlier by Gal-Or and Waslo [8] are employed.
For the special case of ensembles of solid
particles these velocity fields reduce to those of
Happel [10]. The latter were employed by
Ruckenstein [14] and Pfeffer [13] to evaluate
convective transfer in ensembles of (uniform)
spherical solid particles (where surfactant im-
purities play no role and internal circulation is
absent). It would, therefore, be of particular
interest to compare the results of the present
work for ensembles of drops or bubbles with
those of Ruckenstein and Pfeffer for ensembles
of solid particles.
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Table 1. Comparison of available correlations with present results for convective mass transfer rates to or from single or
assembldges of drops, bubbles, or solid particles at low particle Reynolds numbers

Internal

Expression Particles . . Pe Reference
circulation
— ¢t \*
Sh = 0923 (ﬂ Y_—(IY}_W) Pe} Ensemble Strong Large Waslo and Gal-Or 18]
1 —o¢F \*
Sh = 0-895 (ﬂ ————-) Pe} Ensemble Strong Large Present work
Y - ¢tWw
1-¢* 293 (1-¢%
0-849 Sh™% + 4964~ |- -2
(ﬂ Y ) * {15 [2 b Y
J0-0 Moy o, 4
+ @3 B Yy 3 Sh™? = Pe”! Ensemble Intermediate Large  Present work
1—¢% \*
Sh = 1-26 (Y——WV > Pe} Ensemble None Large Pfeffer [13]
1—¢% !
Sh = 1-306 (m ) Pe,! Ensemble None Large Present work
1—¢*
Sh=15 (m> Pet Ensemble None Large Ruckenstein [14]
Us\?
Sh = 0923 O Pet Single Strong Large Levich [11]
Ug\t
Sh = 0923 A Pet Single Strong Large Lochiel and Calderbank
: [12]
U\
Sh = 0-895 (U—o) Pet Single Strong Large  Ruckenstein [14]
Uo\t .
Sh = 0948 T Pet Single Strong Large  Griffith [9]
Uo\} .
Sh = 0864 — ] Pet Single Strong Large Ward, Trass and
U, Johnson [17]
U() -2 3 UO -3 -1 . . .
0-849 X7l Sh™% + 0662 57 2-6— Sh™> = Pe Single Intermediate Large  Ruckenstein [14]
Sh = 0998 Pe* Single None Large Levich [11}
Sh = 099 Pe* Single None Large Lochiel and
Calderbank [12]
Sh = 099 Pe? Single None Large Friedlander [4]
Sh = 1037 Pe* Single None Large  Akselrud [1]
Sh = 0-89 Pet Smngle None Large Friedlander [21]
Sh = 1037 Pe? Single None Large Ruckenstein [14]
Pe 2 . .
Sh=2{1+—+4+015Pe* +.... Single None Small  Kronig and
4 Bruijsten [22]
Sh = 2(1 + 0-16 Pe?) Single None Small  Frisch [23]
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Table 1—continued

Expression Particles 'lntemtal Pe Reference
circulation
Pe Pé? . .
Sh=2[1 +74- + T} + .. Single None Small  Friedlander [21]
M, Total average interfacial transfer given by equation {37)  Size— Strong Large Present work
distributed
ensemble
M, Totalaverageinterfacial transfer given by equation (38) Size— None Large  Present work
distributed
ensemble
CONVECTIVE TRANSFER IN ENSEMBLES oc V. Oc &2c
]
OF UNIFORM PARTICLES — + — = y=r—a;y<1l (1)
dy a a0 dy

Mass and heat transfer between moving drops,
bubbles, or solid particles is an inherently
unsteady-state process. However, small particles
moving at low particle Reynolds numbers attain
their terminal velocity in a few particle diameters
after detachment from their formation devices.
If changes of particle mass due to diffusion and
possible changes in surface tension, viscosities,
etc., are negligible, steady-state analysis becomes
valid for times greater than that required for the
particle to attain its steady-state velocity. The
mass transfer resistance inside drops or bubbles
can be neglected when its contents consists of
only one chemical component (and the con-
tinuous phase is insoluble in the dispersed
phase), or when the combination of diffusivity
and internal circulation makes the internal
resistance negligible compared to that of the
continuous phase. Levich [4] demonstrated
that even at Re < 1 a thin diffusional boundary
layer is formed around the droplet interface
provided that Pe > 1—a condition preveailing
in most liquid phases. Under these conditions
and when axisymmetrical flow exists around the
particles of the assemblage [8] the concentra-
tion fields in the binary diffusional boundary
layer are governed by*

* The analysis and formulations for convective heat
transfer is similar and, therefore, will not be repeated here.

subject to the boundary conditions
c=C;
c = C;

for y=20 )

for y = (6)

where 6(0) is the thickness of the diffusional
(or thermal) boundary layer.

Integration of equation (1) with respect to y
between the limits O and (f) combined with the
continuity equation can readily lead to

(c — Cy) Vpdy

6)
+—‘;cot0 [ (c=C)Vdy. (3
0

where the term 2V,/r in the continuity equation
has been neglected.

We now approximate the concentration field
in the boundary layer by the polynomial

C—C‘;_ _ y y 3 y u
C=C 2%”(%) —<5@)>
@

For the velocity component ¥, in the phase
surrounding ensembles of drops, bubbles or
solid particles we employ the Gal-Or and
Waslo [8] velocity field
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3U 1 1
it S — 3b¥n? Ysi
¥, 2W< g 2’?W-%Y 2¢r;)sm9,

&)

W =3+ 28+ 20%1 - B), (6)
Y=2+28+¢3(3 -2/, )

() (20)+ # () (G- )l

4 4 [3 56) U,

+28v, - 2v)

Ve =‘[Uo

Bringing equations {4) and (11) to (3) one can
show that

+.‘.§X¢i(uo 503]@9. (11)

d[&(ﬂ)/a] Pesin 8 &(0) 5 a U

de 3U, 260)/3 U, s 0O (U, 1

00, T5e 27 20) Y ST \T 3
(12)
_ K 8 Defining the average value of convective mass
b= w+y ®  transfer coefficient over the whole surface of a

particle by
y n
n=1+7. © -D g [(9¢/8y)],=o 2na? sin 8 d6

Here ¢ is the volume fraction occupied by the
dispersed phase and y the “interfacial viscosity”
due to surfactant impurities. The last is respons-
ible for retardation of internal circulation in
drops or bubbles. The derivation and physical
significance of y has been fully discussed
elsewhere [8].

Rewriting ¥, in terms of Uy =V, (y =0,
0 = n/2, any ¢) and U, = V, (y » o, 6 = n/2,
¢ — 0) one easily obtains

Uo — U2 -3
ne| G ()

QU, — Uy + Uy -1
+ ¢§+2° )<1+) +U

2Uo) y 1.

G

Neglecting terms containing higher powers
than one of y/a and ¢%, as well as their products,
equation (10) reduces to

k=

4na*(C, — Cy) 13

and using equation (4) together with the defini-
tion Sh = 2ak/D, one obtains

JSlanG

Sh=2a 50)

(14)

For the following analysis we now distinguish
between three main domains of internal circula-
tion:

(i) Rapidly circulating drops or bubbles
(ie. in highly purified flows in the
laboratory).

(i) Non-circulating solid particles or drops
and bubbles (the last two systems are
known by observations to behave like
solid particles even when the contamina-
tion degree is relatively low [20, 24]).

(iii) Intermediate rates of internal circulation
(covers most practical cases where
internal circulation in drops and bubbies
is only partially retarded).
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(i) Rapidly circulating drops or bubbles
For rapid circulating drops or bubbies,

namely when
3 U, U, $0m(Uo 1Y,
Us> o\ 72

> 26,(3
_—»S [ = -
10U, " 15a\2
equation (12) can be approximated by
o6) d[s@)/a] 40 U,
a’ d§  3PesinfU,

-2 (620)>2 cot 6. (15)

N

Integrating equation (15) and applying the
condition that &(6) approaches a finite value
when 6 — 0, gives

o(0) 80\1/2
7=<“9‘> P

o112 (cos® @ — 3 cos 0 + 2)1/2
sin? @

UO -1/2
<‘ui). (16)

Introducing this solution into equation (14) and
integrating finally gives

U 1/2
Sh=0-895( U—°> Pet/?

— AH¥\1/2
= 0-895 (ﬂl Y¢) Pe'?, (17)

Waslo and Gal-Or [ 18] defined Péclét number
on a basis of “ensemble velocity”

Y
__3 3L
U, 2U5<¢ W).

Using their deﬁyiition, equation (17) becomes

1 - ¢i 1/2 Pel/z
Y — oW €’

which is similar in form to that derived by
Waslo and Gal-Or by a more exact analysis
(see Table 1). When ¢ — 0 and y — 0, equation
(19) reduces to

#c 1/2
Sh = 063 (T—-) Pe'’?
w+

(18)

Sh = 0-895 <,3 (19)

(20)
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which is identical with the expressions of
Ruckenstein [14], for convective mass transfer
to a single clean drop or bubble. Levich [11]
as well as Lochiel and Calderbank [12], found
by using a more exact method, the numerical
coefficient in equation (20) to equal 065,
while Griffith [9], and Ward er al. [17], who
assumed different concentration profiles, give
the values 0-67 and 0-61 respectively.

(i) Solid particles and non-circulating drops or
bubbles
For negligible values of U,/U, namely, when

Us(3 4 b, 5 Om o (1 1

Zof2 _ 2 Im d Tm A2 248

a<5 15a+¢ a><a<5 2¢>’
equation (12) can be approximated by

d[é®)a] 20 a V. siea
dd  Pe sin0<5(0)) (1 - 34
— @cot
a

6.

Integrating this equation and again applying

the condition that §(0) approaches a finite
value when 8 — 0, one obtains

O _ sy - gg912 pene

(20 — sin 26)'7*

sin 0

Introducing this solution into equation (14) and
using the approximation

1- ¢t
— St R4
1 2 4) 1 + %(]5’}’
one obtains in terms of U,
1 — ¢i % s
Sh = 1-306 (m) Pee 5 (21)

and in terms of U

Sh = 1037 (—1_—"’*}-)% P, (22)

1+3¢%
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Equation (21) is similar in form to that,
derived by Waslo and Gal-Or [18], and Pfeffer
[13], who give the value of 1-26 for the numerical
coefficient. Equation (22) is also similar to that
obtained by Ruckenstein [14] for ensembles of
rigid spheres. When ¢ — 0, equation (22) re-
duces to

Sh = 1-037 Pe?

which is identical with the expression of Rucken-
stein [14] and Akselrud [1] for single solid
spheres, and is similar in form to that of Levich
[11], Friedlander [4], and Lochiel and Calder-
bank [12], whose numerical coefficient is 0-998,
(see Table 1).

Our results show that the Sherwood number
in particle ensembles decreases with increasing
volume concentrations of the dispersed phase,
as well as with increasing values of y (due to
retardation of internal circulation by impurities).
The last effect is a function of B [equation (8)].
The significance of the Ilatter conclusion is
apparently not restricted to equation (19),
which is valid at high f values.

(iii) Intermediate rates of internal circulation

In most practical cases the internal circulation
in each member of the drop or bubble ensembles
is only partially retarded due to traces of sur-
factant impurities which are ever present in
particle technology (even the equipment or the
atmosphere may supply enough impurities to
cause a significant change in rates of heat and
mass transfer in the system). For the range of
intermediate rates of internal circulation (i.e.
intermediate values of g or U,/U,) one must
integrate equation (12) numerically, or else
resort to approximate interpolation* methods.
Such an interpolation has been done in this
work whereby equation (12) can be reexpressed
as

Uo -2 2(3 Uy
0849 7Sk +496[15(2 2 U)

¥

+ ¢t (%1 _%] Sh™3 = Pe™!,  (23a)
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or in terms of the more practical variables

0849(/3 — 9"\ on- 2+4960{-2—[2g
(1-¢% (1-9¢H 1
‘2”—7—]“”*[” ]

Sh™3 = Pe™ %, (23b)

It is interesting to note that for solid particles
or non-circulating drops and bubbles (where
B =0 or U, = 0) most correlations of Table 1
agree in showing that

Sh o Pe?,

while for rapidly circulating drops or bubbles in
ideal conditions

Sh oc Pet.

These well-known limits as well as the entire
practical range of intermediate f values are
covered in equation (23).

Furthermore equation (23) generalizes avail-
able correlations for a single solid particle,
drop or bubble to ensembles which consist of
many particles. Hence equation (23) is the most
general one available at present for correlating
convective mass (or heat) transfer in ensembles
of particles in the presence of surfactant im-
purities. It contains as a special case the expres-
sion derived by Ruckenstein [14] for a single
particle (see Table 1).

TOTAL AVERAGE CONVECTIVE TRANSFER
IN SIZE-DISTRIBUTED PARTICULATE SYSTEMS

A general analysis and formulation for the
evaluation of total average coupled heat and
multicomponent mass transfer in size-distributed
particulate systems has been recently given by
Gal-Or [7]. According to this formulation the
total average interfacial mass transfer in un-
coupled binary systems with large population
of particles characterized by any general
normalized particle size distribution

f f@da=1
0
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is given by

M=— f f ND(QE) 2na*sinOfia)dads, (24)
ay y=0

where
3¢V
- o 25)
a, = [Z af(a) dal?. 26)

Employing equation (4) and (14) in (24) and
defining a mean volume Sherwood number,

S ==

one obtains the total average convective inter-
facial transfer rate

@n
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Here Sherwood number has not been included
in the integral. This is based on previous con-
clusion of Gal-Or and Hoelscher [5] which
states that negligible error is introduced in the
mass- (or heat)-transfer coefficient if one replaces
the variable particle size by the appropriate
statistical mean.

To integrate equation (28) one must employ
the appropriate expression for f(a). For many
dispersed systems such expressions are rather
complicated and do not readily lend themselves
to analytical treatment. In certain cases, how-
ever, such as that of some gas-liquid and liquid-
liquid dispersions produced by mechanical
agitation, one can approximate the size-
distribution function by simpler relations, con-
taining only a single parameter.

Such a practical case is illustrated in Fig. 1,

3 ¢V i
M =225k (C, - Cy) af( a)da. (28) where. some e_xperxfnental dat'fl are _correlated
2(@,) by using a dimensionless radius a/a,,, where
d,, is the surface mean radius defined by
100 (o4
90—
80
13
8 70—
4
g e0
=
g
2 50
5
g aob
=]
j&)
30—
20—
10—
cen BOATRE | ! |
0] 05 10 15 20 25
a/Gs,

F1G. 1. Generalized size distribution data for gas—liquid and liquid-liquid dispersions.
(O Experimental data of Chen and Middleman [3] for liquid-liquid dispersions in agitated

Vessels;

A Data of Gal-Or [6] for gas-liquid dispersions in agitated contractor;

] Data of Weaver et al. [19] for isobutanol-in-water dispersions in a spray column; and
-~ Data of Shinnar [16] for molten wax—water dispersions in stirred vessels.

———- Bayens distribution function [equation (31)).

————— Chen and Middleman’s empirical expression [equation (30)].
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a’f(a)da
29

a32 =

‘—:8 o8

a*f(a)da
0

The data include those of Chen and Middleman
[3] for dispersions of 14 different organic liquids
in water in agitated vessels of different diameters
and agitator-to-vessel dameter ratios; of Gal-Or
[6, 7] for air-water dispersions in agitated
contactors at different agitator speeds; of Shinnar
[16] for dispersions of 5% molten Shellwax in
hot water in the presence of 0-1% polyvinyl
alcohol, produced in an agitated vessel by a
turbine mixer rotating at different speeds; and
the data of Weaver et al. [19] for dispersion of
isobutanol in water, obtained by passing the
organic phase through } in. nozzles into a
spray column.

As seen from Fig. 1, the data are adequately
correlated by the empirical expression of Chen
and Middleman [3]

— _92(2 _ 106) 30
ﬂa)—mexp i, . (30)

To evaluate total interfacial mass transfer rate
from equation (28) one would, however, prefer
to approximate the size-distribution data by the
more readily integrable expression

3

fa) =4 (rx_n>* a? exp [ —aa?], (31)

originally proposed by Bayens [2] for coagula-
tion of hydrosols in Brownian motion, and
subsequently modified by Gal-Or and Hoelscher
[5] In equation (31),

4 3
*= <(¢n> (&:)’) - %
It has been shown [7], that for this case
d, = d;,/1-148. (33)

Equation (31) has the same form as the Maxwell-
Boltzmann speed distribution function for
gaseous atoms, and may conceivably be associ-
ated with the spectrum of energy levels involved
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in the process of dispergation.

Introducing equation (31) into (28) and inte-
grating one finally obtains the general design
equation -

M=Gr

Shinnar and Church [15] have shown
theoretically that for dispergation by mechanical
agitation, when break-up of droplets is the
predominant mechanism with respect to their
coalescence, the surface mean radius may be
related to the agitator Weber number by

Gy, = BL(We) %% (We = *pQ?/0). (35)

Their prediction was experimentally substanti-
ated by Chen and Middleman [3], who found
B = 0-026 for small values of ¢.

Employing equation (33) and (35) and the
above value of B in (34) one obtains the practical
result

M =425 x 10°.

Shy ¢V(Cs — C).  (34)

(We)1~2
L2
For mass transfer from ensembles of drops or

bubbles with high internal circulation (highly

pure systems), equation (36) becomes

10 L=
M= 3% x (Bm)
(T’_e3)‘} (We)' 2
X 2 - 7
L2
and for ensembles of solid particles or non-
circulating drops or bubbles

Shy $V(C; ~ Co). (36)

dV(Cs — C), (37)

e sf 1-¢* )
M =555 x 10 <Y—¢*W
B vk 1-2
Pes) WO~ svic, ~ C)) (38)

L2
For intermediately circulating size-distributed
drops or bubbles one must evaluate Sh; from
equation (23). This can be done when the particu-
lar operating conditions are known (ie. ¢,
P Pas B Mas ¥ G5 and g). These equations can be
used in predicting trends in operating conditions
and efficiency of size-distributed two-phase
dispersed systems.
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Table 1 compares the present results with
available correlations for convective transfer
rates to or from single drops, bubbles or solid
particles or their assemblages moving at low
particle Reynolds numbers. The comparison
demonstrates the generality and applicability
of the present results which include to a first
approximation most available correlations for
single particles and assemblages moving with
rapid, intermediate and zero internal circulation.

Finally it should be noted that the Sherwood
numbers reported here do not include the non-
flow contribution which can usually be approxi-
mated by 2/(1 — ¢*). A more exact evaluation
of the non-flow contribution is available else-
where [26].
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CONVECTION THERMIQUE OU MASSIQUE AUTOUR DE GOUTTES, DE BULLES OU
PARTICULES SOLIDES DISTRIBUEES EN TAILLE

Résumé—Des analyses utilisables de la convection thermique ou massique dans des systémes & particules
traitent seulement d’une goutte ou d’une bulle unique dans le cas idéal d’un systéme complétement pur.
11 est cependant nécessaire d’établir des relations pour des ensembles de plusieurs gouttes ou bulles dans
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des systémes pratiques & deux phases ou les impuretés surfactantes sont toujours présentes. De telles
formules sont développées dans cet article en appliquant la méthode intégrale de Von Kdrman-Pohlhausen
a une couche limite formée dans des nuages mobiles de gouttes, bulles ou particules solides sphériques. Les
résultats obtenus généralisent des analyses antérieures pour des particules uniques et pour des ensembles de
particules solides. En particulier, cette méthode permet 1’évaluation de cas pratiques, encore non traités, de
la convection dans des ensembles de gouttes ou bulles circulant en régime intermédiaire. A partir de ces
nouveaux résultats, 'application de cette méthode est étendue a I’analyse de la convection globale moyenne
dans des populations distribuées en taille. Pour I’établissement d’une fonction appropriée de distribution
en taille des particules, un grand nombre de résultats expérimentaux est unifi¢ par une fonction a paramétre
unique qui est déja intégrée pour donner les fiux globaux de transfert interfacial. Une comparaison avec
d’autres formules démontre la généralité et 'applicabilité des résultats présents qui incluent en premiére
approximation des formules plus utilisables pour des gouttes ou bulles dans le cas d’une circulation interne
rapide, intermédiaire ou nulle.

STOFF- ODER WARMEUBERTRAGUNG VON GROSSENVERTEILTEN TROPFEN
BLASEN ODER FESTEN TEILCHEN BEI KONVEKTION

Zusammenfassung—Verfiigbare Untersuchungen der konvektiven Stoff- oder Wirmeiibertragung in
Systemen mit einzelnen Teilchen behandeln nur einen einzigen Tropfen oder eine einzige Blase fir den
Idealfall eines vollkommen reinen Systems. Daher ergibt sich eine gewisse Notwendigkeit, Bezichungen
fur Anhidufungen vieler Tropfen oder Blasen fiir inder Praxis vorkommende zweiphasige Systeme aufzustellen,
wo Unreinheiten stets vorhanden sind. Solche Beziehungen werden in der vorliegenden Arbeit unter
Anwendung des von-Karman-Pohlhausen-Integrals auf die Grenzschicht entwickelt, wie sie sich in einer
bewegenden Menge kugelférmiger Tropfen, Blasen oder fester Teilchen ausgebildet hat. Die erzielten
Ergebnisse gestatten eine Verallgemeinerung der vorhergehenden Loésung fiir einzelne Tropfen und fir
eine Anhiufung fester Teilchen. Insbesondere erlaubt diese Methode die Auswertung noch unbehandelter
praktischer Fille der konvektiven Ubertragung bei untereinander zirkulierenden Tropfen- oder Blasen-
haufen. Mit diesen neuen Ergebnissen wird die Anwendbarkeit dieser Methode auf die Untersuchung
der gesamten durchschnittlichen konvektiven Ubertragung bei grossenverteilter Anhiufung erweitert.
Fir die Aufstellung einer passenden Verteilungsfunktion fiir die Teilchengrosse wird eine grosse Anzahl
von Versuchswerten herangezogen.

KOHBEKTHUBHBLIA MACCO- WIU TEIJIOOBMEH KAIIEJIb, [IV3BIPEN
WU TBEPIABIX YACTUL], PACIIPENEJEHHBIX IO PASMEPY

Ansoragua—CyIiecTByOIil MeTO AaHAJIM34 KOHBEKTHBHOTO MAacCOILIH Temaoolmena B
CHCTEMAX, COCTOALIUX H3 YACTHII, COCTOMT H3 PACCMOTPEHHA TOJBKO OJHON KamjM N
My3EpPbKA [JIfl MIEATbHOTO CIy4as 4HcTol ciucremel. Cae0oBaresbHO, CymecTsyeT HeoOXomn-
MOCTh YCTAHOBIIEHIA COOTHOLIEHMIX JJIA «COBOKYITHOCTEI» MHOKECTBA Kalleb WM NYy3bIpbKOB
B 2-x dasHBIX CHCTeMax, rjfe NMOCTOAHHO NPUCYTCTBYIOT CONYTCTBYIOMINE 3arpA3HEHHA. TN
COOTHOLIEHMA paspalaThHBaOTCA B Hacrodmeii pafoTe MpH HCHOJIb30BAHNH IHTErPAIBLHOTO
meroga Hapmana-Tlompxaysena (A NOTPAHHYHOIO CJ0f, 06pa3ylomieroca B ABUAYIIHXCH
obmakax cepryecKIX Kameb, NY3LIPbKOB Ml TBepabix yactull. Homyuennsie pesynpTaTH
ABIAIOTCA 00001IeHIleM NPeALIECTBYIOMIIX AHAMHIOB IIA OJMHOYHBIX YACTHUI] H COBOKYTI-
HOCTelt, COCTOAINX U3 TBEPABIX YACTHI. B YACTHOCTH, HTOT METOH NO3BOJIAET OIEHUTE 0 CHX
MOp HEeMCCIefOBAHHBIE TPAKTIYECKHE CJIyYall KOHBCKTHBHOTO o0MeHa B LUPKYJIMPYOLIAX
rpynnax Kamejb MW Ny3blpbkOB. Mcnoipsys OTil HOBbIE [aHHBIE, BTOT METON MOXHO
NPUMEHHTH AJA AHAJIM3A CYMMAPHOrO CPEJHETO KOHBEKTHBHOrO 00MeHa B NONYIALNAX,
pacupeieeHHbIX 110 pasMepy.

Jinsi  onpejsieHMs COOTBETCBYWILeit (YHKUMH pacnpejesleHHs M0 pasMepy dYacTauy

ofobuaerca GONbIIOe KOTHYIECTBO HRCIEPUMEHTAIBHBX JTAHHBIX.
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